Notation. We introduce a complex

$$X = \{ K_1, K_2, \ldots, K_n \}$$

as a collection of group elements without respect to order.

(i) Can multiply a complex by an element, e.g.,

$$KX = \{ K_1X, K_2X, \ldots, K_nX \}$$

where X is any group element.

(ii) Can multiply a complex by a complex

$$\Rightarrow K'R' = \{ K_1R_1, K_2R_2, \ldots, K_nR_n, K'_1R'_1, K'_2R'_2, \ldots \}$$

Again, a collection of elements C is a class if $X^{-1}C X = C$ for X in H.

Consider the product of 2 classes $C_i C_j$

$$\Rightarrow C_i C_j = (X^{-1}C_i X)(X^{-1}C_j X)$$

$$= X^{-1}(C_i C_j) X$$

$$\Rightarrow C_i C_j$$ consists of complete classes.

i.e., we can write the product $C_i C_j$ symbolically as a "sum" of single but complete classes, as

$$C_i C_j = \sum_{k} a_{ij,k} C_k$$

where $a_{ij,k}$ is integer telling how many times the complete class C_k appears.
Equilateral Triangle Example

There are 3 classes:

\[C_1 = \{E\} \]
\[C_2 = \{A, B, C\} \]
\[C_3 = \{D, F\} \]

\[C_1 C_1 = C_1 \quad C_1 C_2 = C_2 \quad C_1 C_3 = C_3 \]

\[C_2 C_2 = \{AA, AB, AC, BA, BB, BC, CA, CB, CC\} \]
\[= \{E, D, F, F, E, D, D, F, E\} \]
\[= 3C_1 + 3C_3 \]

\[C_2 C_3 = \{AD, AF, BD, BF, CD, CF\} \]
\[= \{B, C, A, C, A, B\} \]
\[= 2C_2 \]

\[C_3 C_3 = \{D^2, DF, E^2, ED\} = \{F, E, E, D\} \]
\[= 2C_1 + C_3 \]

Def. We saw earlier that there are a finite number,
(l - 1 where \(l = \frac{6}{2}\)) of distinct cosets for any subgroup \(G\). Call each of these a complex \(K_i\). Then if \(G\) is an invariant subgroup, we know that \(G K_i = K_i G\) i.e. \(K_i^{-1} G K_i = G\).

Moreover \(G K_i = G K_j\) i.e. \(K_i \cap K_j\) are in the same coset. And this set of \((l - 1)\) complexes plus \(G = \{G, K_2 \cdots K_l\}\) is a smaller group itself called the Factor Group of \(H\) w.r.t. the normal divisor (inv. subgroup) \(G\). (And "E" = G here)
Representation Theory (Tinkham, Chap. 3)

GOAL To develop the method of representing elements of a group by matrices, with matrix multiplication for group multiplication

Def Let $G = \{E, A, B, C, \ldots \}$ be a finite group of order g with $E = \text{identity}$

\Rightarrow Let $T = \{ T(E), T(A), \ldots \}$ be a set of nonsingular matrices of the same dimension, such that $T(A) T(B) = T(AB)$

i.e. if $AB = C$ in group G, then $T(A) T(B) = T(C)$ in T

Then the set T of matrices is called a **representation** of group G.

and the # rows (or columns) = dimension of the representation
Two possible cases

1. If all matrices of the set \(T \) are distinct, i.e. there is no \(T(X) = T(Y) \), then
 a) there is a one-to-one correspondence between the elements of \(G \) and the elements/matrices of \(T \), i.e. for each element of \(G \) there corresponds exactly one element of \(T \).
 b) Groups \(G \) and \(T \) are isomorphic.
 c) Then the representation of \(G \) by matrices \(T \) is called a \underline{faithful} representation.

2. If the matrices are \underline{not all distinct},
 \(\Rightarrow \) there is only a \underline{homomorphism} from \(G \) to \(T \) and the representation is \underline{unfaithful}.

Notice that a trivial representation of any group is \(T(e) = I \), \(T(A) = I \), ...

This is called the identity representation, and it is unfaithful, for \(g \neq 1 \).

Note: One can prove that every group has at least one faithful (i.e. physically useful) representation.
Example from QM

Let the elements of G represent operators in an n-dimensional vector space, and let $\{ \phi_i \}$ be a complete, orthonormal basis.

$$\Rightarrow A \phi_i = \sum_j \phi_j T_{ji}(A)$$

i.e. $A|\phi_i\rangle = \sum_j |\phi_j\rangle \langle \phi_j| A|\phi_i\rangle$

This logic helps to remember the order, why it is $\phi_j T_{ji}(A)$

$$\Rightarrow$$ These matrices $T(E), T(A)$... generate a representation of G since

$$\hat{A}(\hat{B} \phi_i) = \hat{A} \left(\sum_j \phi_j T_{ji}(B) \right)$$

$$= \sum_j \sum_k \phi_k T_{kj}(A) T_{ji}(B)$$

or $\hat{A}\hat{B} \phi_i = \sum_k \phi_k T_{ki}(AB)$

these two expressions agree provided

$$\sum_j T_{kj}(A) T_{ji}(B) = T_{ki}(AB)$$

i.e. $T(A) T(B) = T(AB)$
Properties of group representations

1) The matrix corresponding to E must be the identity matrix, $T(E) = I = E$

2) $T(A^{-1}) = [T(A)]^{-1}$

3) Suppose we have 2 representations of a group G, i.e.

$T_1 = \{ T_1(E), T_1(A), T_1(B), \ldots \}$

$T_2 = \{ T_2(E), T_2(A), T_2(B), \ldots \}$

If there exists a nonsingular matrix S, such that

$T_1(A) = S^{-1} T_2(A) S$

$T_1(B) = S^{-1} T_2(B) S$

i.e. with the same matrix S for every group element, they are said to be EQUIVALENT REPRESENTATIONS.

If no S exists such that this is true, then T_1 and T_2 are said to be INEQUIVALENT or DISTINCT.
Reducible vs. Irreducible

Recall— we saw earlier how we can always take 2 or more representations of a group, and make a new (faithful) representation by combining the matrices into larger matrices.

\[
T(A) = \begin{pmatrix}
T_1(A)_{n \times n} & 0 \\
0 & T_2(A)_{m \times m}
\end{pmatrix}
\]

artificially enlarged to \((n+m) \times (n+m)\)

Such representations are said to be REDUCIBLE.

The following discussion quantities this.

* Note first of all that reducibility of a given representation can be concealed by the application of a similarity transformation, \(S\), which mixes up rows, columns, etc.

More general definition: If all matrices in a given representation can be transformed into block-diagonal form by the same similarity transform, \(S\), then the representation is called REDUCIBLE.

If no such matrix \(S\) exists such that all \(T(X)\) can be transformed to block-diagonal form, then it is called an IRREDUCIBLE REPRES. or IRREP.
Notation. When a reducible repr. T is put into its block-diagonal form, with each block $T^{(1)}, T^{(2)}, \ldots$ irreducible, we indicate the breakdown of T as

$$T = T^{(1)} + 2T^{(2)} + \ldots$$

(this does not mean an actual sum)

or more generally

$$T = \sum_{i} a_i T^{(i)}$$

When this has been accomplished, we call it a decomposition into its irreducible parts.
For instance, there turn out to be 3 irreducible representations for the equilateral triangle group:

\[
\begin{array}{ccccccc}
\text{Dimensionality} & E & A & B & C & D & F \\
\hline
\lambda_i = 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\lambda_i = 1 & 1 & -1 & -1 & -1 & 1 & 1 \\
\lambda_i = 2 & \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}, & \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}, & \begin{pmatrix}
\frac{1}{2} & \frac{-\sqrt{3}}{2} \\
\frac{-\sqrt{3}}{2} & \frac{1}{2}
\end{pmatrix}, & \begin{pmatrix}
\frac{1}{2} & \frac{-\sqrt{3}}{2} \\
\frac{-\sqrt{3}}{2} & \frac{1}{2}
\end{pmatrix}, & \begin{pmatrix}
\frac{1}{2} & \frac{-\sqrt{3}}{2} \\
\frac{-\sqrt{3}}{2} & \frac{-1}{2}
\end{pmatrix}, & \begin{pmatrix}
\frac{1}{2} & \frac{-\sqrt{3}}{2} \\
\frac{-\sqrt{3}}{2} & \frac{-1}{2}
\end{pmatrix}
\end{array}
\]

Note: \(\text{Tr}\{E^2\} = 2 \) for the \(\lambda_i = 2 \) irrep

\[
\text{Tr}\{A^2\} = 0 = \text{Tr}\{B\} = \text{Tr}\{C\} \\
\text{Tr}\{D\} = -1 = \text{Tr}\{F\}
\]

\(\Rightarrow \) Traces are in fact the same for all matrices in the same class, as we had stated previously.
Lemma 1 Equivalence to a unitary representation

Consider the following matrix, which is Hermitian, by construction:

\[H = \sum_{i=1}^{h} A_i A_i^\dagger \]

call \(T(A_i) \rightarrow A_i \) for each of the \(h \) group elements.

Since \(H \) is Hermitian, it can be diagonalized by a unitary transformation \(U \)

\[U^\dagger H U = \text{diagonal} \]

eigenvalues which here must be real and positive.

Then,

\[d = \sum_i (U^\dagger A_i U)(U^\dagger A_i U) = \sum_i A_i A_i^\dagger \]

where \(U^\dagger A_i U = A_i^\dagger \), \(U^\dagger A_i^\dagger U = A_i \)

\[\Rightarrow E = d^{-\frac{1}{2}} \sum_i A_i A_i^\dagger d^{-\frac{1}{2}} \]

Then define \(A_j = d^{-\frac{1}{2}} A_j d^{-\frac{1}{2}} \)

and we have each \(A_j \) will now be unitary.
To see this, note

\[A_j A_j^* + = \left(d^{-\frac{1}{2}} A_j \ d^2 \right) E \left(d^{\frac{1}{2}} A_j^* \ d^{-\frac{1}{2}} \right) \]

\[= \left(d^{-\frac{1}{2}} A_j \ d^{\frac{1}{2}} \right) \left(d^{-\frac{1}{2}} \sum_k A_k A_k^* \ d^{\frac{1}{2}} \right) \left(d^{\frac{1}{2}} A_j^* \ d^{-\frac{1}{2}} \right) \]

\[= d^{-\frac{1}{2}} \sum_k (A_j A_k^*) (A_j A_k^*)^+ d^{-\frac{1}{2}} \]

This is in the group, \(T \) by the rearrangement theorem, every element appears exactly once, whereby

\[A_j A_j^* + = d^{-\frac{1}{2}} \sum_i A_i A_i^* d^{-\frac{1}{2}} = E \]

So starting from an arbitrary repr., this procedure shows how to make all of the repr. matrices unitary.
Schur's Lemma: Any matrix that commutes with all matrices of an irreducible representation must be a constant matrix.

- i.e., if a nonconstant commuting matrix exists for some representation, it must be reducible.

(A "constant matrix" means a constant scalar multiple of the identity)

Proof: Let M be a matrix that commutes with all matrices of a representation (unitary, by lemma).

$$
A_i \cdot M = M \cdot A_i, \quad i = 1, \ldots, h
$$

then

$$
M^+ A_i^+ = A_i^+ M^+
$$

and of course $A_i^{-1} M = M A_i^{-1}$ since A_i^{-1} is in the group.

$$
A_i \cdot (M^+ A_i^+) A_i = A_i \cdot (A_i^+ M^+) A_i
$$

$$
\Rightarrow A_i M^+ = M^+ A_i
$$

and $M A_i^+ = A_i^+ M$

we want to prove that $M = c \cdot I = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}$

Now, if M and M^+ commute, then so do the Hermitian matrices

$$
H_1 = M + M^+
$$

$$
H_2 = i \cdot (M - M^+)
$$

So, continue this theorem using the Hermitian matrix H, without loss of generality.
Now, begin by diagonalizing H:

\[d = U H U = \text{diagonal} \]

i.e. \[d = U \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} U^+ \]

and now perform a similarity transformation on each A_i, defining

\[A_i' = U^{-1} A_i U = \begin{pmatrix} \lambda_1 A_i \\ \vdots \\ \lambda_n A_i \end{pmatrix} U^+ \]

\[\Rightarrow H A_i = A_i H \]

\[U^+ d U^+ A_i = A_i U d U^+ \]

\[\Rightarrow d (U^+ A_i U) = (U^+ A_i U) d \]

or \[d A_i = A_i' d \] (d commutes with A_i)

explicitly, this means that \[d_{\mu\nu} (A_i')_{\nu\lambda} = (A_i')_{\mu\lambda} d_{\nu\nu} \]

whereby

\[(A_i')_{\mu\nu} (d_{\mu\nu} - d_{\lambda\nu}) = 0 \]

This is satisfied if either (i)

\[\frac{d_{\mu\nu}}{d_{\mu\nu}} = d_{\lambda\nu} = C \text{ for all } \mu, \nu \]

i.e. $H = cE$

Since then $d = U (cE) U$

\[= cE \]

OR (ii) \[(A_i')_{\mu\nu} = 0 \text{ for all } \mu, \nu \text{ having } d_{\mu\nu} \neq d_{\lambda\nu} \]

i.e. \[d = \begin{pmatrix} d_{\mu\nu} & 0 & \cdots & 0 \\ 0 & d_{\mu\nu} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{\mu\nu} \end{pmatrix} \]

\[\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \]

\[\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \]

\[\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \]

\[\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \]

\[\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \]
meaning that \((A_i')_{\mu
u} = \begin{pmatrix} (A_i')_{\mu
u} & 0 \\ 0 & (A_i')_{\nu\nu} \end{pmatrix}\)

\(\implies A_i'\) is a reducible representation.

So in summary, if the representation was IRREDUCIBLE, then \(M = cE\).

Lemma 3 Suppose we are given 2 irreducible representations of a group \(H\),

\(T^{(1)}(A_i)\) of dimensionality \(l_1\),

and \(T^{(2)}(A_i)\) of dimensionality \(l_2\).

Now suppose a rectangular matrix \(M(l_2 \times l_1)\) exists such that

\[M T^{(1)}(A_i) = T^{(2)}(A_i) M, \quad i=1, \ldots, h\]

Then either (1) if \(l_1 \neq l_2\), \(M = 0\)

\(\) or (2) if \(l_1 = l_2\), \(M = 0\) or else \(\det M = 0\) (and if this is true, \(M^{-1}\) exists, consequently

\[M T^{(1)}(A_i)^{-1} M = T^{(2)}(A_i)\]

and the 2 representations are equivalent.
Proof of lemma 3 - this proof assumes unitary representations without loss of generality. And take \(\ell_1 \leq \ell_2 \) to be definite.

Start from \(MT^{(i)}(A_i) = T^{(2)}(A_i^*) M, \quad i = 1, \ldots, h \)
and \(T^{(i)}(A_i^*) M^+ = M^+ T^{(2)}(A_i^*) \)

or \(T^{(i)}(A_i^*) M^+ = M^+ T^{(2)}(A_i^*) \)

left-mult by \(M \)

and of course \(MT^{(i)}(A_i^*) = T^{(2)}(A_i^*) M \)

right-mult by \(M^+ \)

\[\Rightarrow M M^+ T^{(2)}(A_i^*) = T^{(2)}(A_i^*) M M^+ \]

\[\Rightarrow \text{We have found a matrix}, \; MM^+, \text{which commutes with all the matrices of this IRREP.} \]

\[\Rightarrow MM^+ = cE, \text{ by Schur's lemma.} \]

Consequences Let \(\ell_1 = \ell_2 \) first, so that \(M \) = square matrix

\[\Rightarrow |\det(M)|^2 = c \ell_1 \]

Hence a) if \(c \neq 0, \; \det(M) \neq 0 \) and \(M^{-1} \) exists whereby \(T^{(1)} \) and \(T^{(2)} \) are equiv. reps. and \(M \) = similarity-transf. matrix

or b) if \(c = 0 \Rightarrow MM^+ = 0 \Rightarrow M = 0 \)

\[\sum_k |M_{ik}|^2 = (MM^+)_{ii} \]
and notice that $MM^+ = NN^+$
and N clearly has $\det(N) = 0$

$\Rightarrow \det(NN^+) = \det(MM^+) = 0$

But we saw that $MM^+ = CE$
$\Rightarrow c = 0$ which can be true only if $M = 0$ itself! and we're done!
The next result is **AMAZING**:

The **GREAT ORTHOGONALITY THEOREM**

Consider any 2 inequivalent, irreducible, unitary representations of group \(\mathcal{H} \) of order \(h \), namely \(\tau^{(i)} \) and \(\tau^{(j)} \)

Then

\[
\sum_{R} \left[\tau^{(i)}(R) \right]^*_{\mu \nu} \left[\tau^{(j)}(R) \right]_{\alpha \beta} = \frac{h}{l_i} \delta_{ij} \delta_{\mu \alpha} \delta_{\nu \beta}
\]

where the sum over \(R \) includes ALL group elements \(E, A_2 \ldots A_h \),

and where \(l_i = \text{dimensionality of } \tau^{(i)} \)

Proof

First consider the case \(i \neq j \Rightarrow \) irreps inequivalent

Then we claim that a matrix obeying lemma 3 is

\[
M = \sum_{R} \tau^{(j)}(R) \times \tau^{(i)}(R^{-1})
\]

where \(\times = \text{arbitrary } l_2 \times l_1 \text{ matrix} \)

Verification

\[
\tau^{(j)}(A_i) M = \sum_{R} \tau^{(j)}(A_i;R) \times \tau^{(i)}(R) \times \tau^{(i)}(R^{-1})
\]

\[
\Rightarrow \tau^{(j)}(A_i) M = \sum_{R} \tau^{(j)}(A_i;R) \times \tau^{(i)}(R^{-1} A_i^{-1}) \tau^{(i)}(A_i)
\]

\[
= \sum_{R'} \tau^{(j)}(R') \times \tau^{(i)}(R'^{-1}) \tau^{(i)}(A_i)
\]

hence

\[
\tau^{(j)}(A_i) M = M \tau^{(i)}(A_i)
\]